Properties

Label 139230.j
Number of curves $8$
Conductor $139230$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 139230.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139230.j1 139230dy7 \([1, -1, 0, -20326751460, 1115454997162890]\) \(1274090022584975661628188489514561/14072533302105480763470\) \(10258876777234895476569630\) \([2]\) \(201326592\) \(4.3687\)  
139230.j2 139230dy5 \([1, -1, 0, -1271435310, 17400026145600]\) \(311802066473807207098058600161/1033693082103011001480900\) \(753562256853095020079576100\) \([2, 2]\) \(100663296\) \(4.0221\)  
139230.j3 139230dy4 \([1, -1, 0, -1251138330, -17033273811324]\) \(297106512928238351998640242081/3977028808593750000\) \(2899254001464843750000\) \([2]\) \(50331648\) \(3.6755\)  
139230.j4 139230dy8 \([1, -1, 0, -723647160, 32492356581510]\) \(-57487943130312093140621093761/592356094985924086700006670\) \(-431827593244738659204304862430\) \([2]\) \(201326592\) \(4.3687\)  
139230.j5 139230dy3 \([1, -1, 0, -114714810, 6882675300]\) \(229010110533436633465952161/132501160769452503210000\) \(96593346200930874840090000\) \([2, 2]\) \(50331648\) \(3.6755\)  
139230.j6 139230dy2 \([1, -1, 0, -78264810, -265639394700]\) \(72727020009972527154752161/265361167808100000000\) \(193448291332104900000000\) \([2, 2]\) \(25165824\) \(3.3289\)  
139230.j7 139230dy1 \([1, -1, 0, -2682090, -7917436044]\) \(-2926956820564562516641/35459588343029760000\) \(-25850039902068695040000\) \([2]\) \(12582912\) \(2.9824\) \(\Gamma_0(N)\)-optimal
139230.j8 139230dy6 \([1, -1, 0, 458805690, 54714285000]\) \(14651516183052242700771495839/8480668142378708755560900\) \(-6182407075794078682803896100\) \([2]\) \(100663296\) \(4.0221\)  

Rank

sage: E.rank()
 

The elliptic curves in class 139230.j have rank \(1\).

Complex multiplication

The elliptic curves in class 139230.j do not have complex multiplication.

Modular form 139230.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} + 4 q^{11} + q^{13} + q^{14} + q^{16} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 16 & 4 & 4 & 8 & 16 & 8 \\ 2 & 1 & 8 & 2 & 2 & 4 & 8 & 4 \\ 16 & 8 & 1 & 16 & 4 & 2 & 4 & 8 \\ 4 & 2 & 16 & 1 & 4 & 8 & 16 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 2 & 8 & 2 & 1 & 2 & 4 \\ 16 & 8 & 4 & 16 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.