# Properties

 Label 13923.c2 Conductor $13923$ Discriminant $34793577$ j-invariant $$\frac{105890949891}{1288651}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z$$

# Learn more about

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -296, 2010])

gp: E = ellinit([1, -1, 1, -296, 2010])

magma: E := EllipticCurve([1, -1, 1, -296, 2010]);

$$y^2+xy+y=x^3-x^2-296x+2010$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(8, 6\right)$$ $$\left(36, 174\right)$$ $$\hat{h}(P)$$ ≈ $0.30678668218679677511615065088$ $2.2617003402632048249612318791$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(11, -6\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-16, 57\right)$$, $$\left(-16, -42\right)$$, $$\left(-6, 62\right)$$, $$\left(-6, -57\right)$$, $$\left(-1, 48\right)$$, $$\left(-1, -48\right)$$, $$\left(8, 6\right)$$, $$\left(8, -15\right)$$, $$\left(11, -6\right)$$, $$\left(15, 20\right)$$, $$\left(15, -36\right)$$, $$\left(36, 174\right)$$, $$\left(36, -211\right)$$, $$\left(60, 414\right)$$, $$\left(60, -475\right)$$, $$\left(470, 9939\right)$$, $$\left(470, -10410\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$13923$$ = $$3^{2} \cdot 7 \cdot 13 \cdot 17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$34793577$$ = $$3^{3} \cdot 7^{3} \cdot 13 \cdot 17^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{105890949891}{1288651}$$ = $$3^{3} \cdot 7^{-3} \cdot 13^{-1} \cdot 17^{-2} \cdot 19^{3} \cdot 83^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.25772100688573358696325919320\dots$$ Stable Faltings height: $$-0.016932065281293835885552116031\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.67145285682473985616958685343\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$2.0734590977450085432025924709\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$12$$  = $$2\cdot3\cdot1\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 13923.2.a.c

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{4} - 2q^{5} + q^{7} + 3q^{8} + 2q^{10} - q^{13} - q^{14} - q^{16} - q^{17} - 8q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 3840 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$4.1766901040704005123765593277273577836$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$III$$ Additive 1 2 3 0
$$7$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$13$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$17$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary add ordinary split ss nonsplit nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary 5 - 2 3 2,2 2 2 2 2 2 2 2 2 2,2 2 0 - 0 0 0,0 0 0 0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 13923.c consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{273})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $4$ 4.4.11361168.4 $$\Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.2.5216964455547.3 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.