Properties

Label 13860.p
Number of curves $1$
Conductor $13860$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 13860.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13860.p1 13860u1 \([0, 0, 0, -192, -1244]\) \(-4194304/1155\) \(-215550720\) \([]\) \(3840\) \(0.31492\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 13860.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 13860.p do not have complex multiplication.

Modular form 13860.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} + q^{11} - 3q^{17} - q^{19} + O(q^{20})\)  Toggle raw display