Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 1386.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
1386.g1 | 1386g3 | [1, -1, 1, -828041, -289811415] | [2] | 15360 | |
1386.g2 | 1386g2 | [1, -1, 1, -51881, -4494999] | [2, 2] | 7680 | |
1386.g3 | 1386g4 | [1, -1, 1, -13001, -11104599] | [2] | 15360 | |
1386.g4 | 1386g1 | [1, -1, 1, -5801, 57705] | [4] | 3840 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1386.g have rank \(1\).
Complex multiplication
The elliptic curves in class 1386.g do not have complex multiplication.Modular form 1386.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.