Properties

Label 1380.a
Number of curves $1$
Conductor $1380$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1380.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1380.a1 1380b1 \([0, -1, 0, 766939, 112645761]\) \(194879272239195815936/134287459716796875\) \(-34377589687500000000\) \([]\) \(43680\) \(2.4373\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1380.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1380.a do not have complex multiplication.

Modular form 1380.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 5 q^{7} + q^{9} + 4 q^{13} + q^{15} - 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display