Properties

Label 13766a
Number of curves 1
Conductor 13766
CM no
Rank 3

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("13766.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 13766a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
13766.a1 13766a1 [1, 0, 1, -23, 42] [] 4896 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 13766a1 has rank \(3\).

Modular form 13766.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{2} - 2q^{3} + q^{4} - 4q^{5} + 2q^{6} - 4q^{7} - q^{8} + q^{9} + 4q^{10} - 3q^{11} - 2q^{12} - 6q^{13} + 4q^{14} + 8q^{15} + q^{16} - 6q^{17} - q^{18} - 8q^{19} + O(q^{20}) \)