Properties

Label 1369.b
Number of curves $2$
Conductor $1369$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1369.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1369.b do not have complex multiplication.

Modular form 1369.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + 2 q^{7} + 3 q^{8} - 3 q^{9} + q^{10} - 2 q^{11} + 2 q^{13} - 2 q^{14} - q^{16} - 3 q^{17} + 3 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1369.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1369.b1 1369c2 \([1, -1, 1, -1663, -25680]\) \(-371323264041\) \(-1369\) \([]\) \(252\) \(0.26170\)  
1369.b2 1369c1 \([1, -1, 1, 2, -2]\) \(999\) \(-1369\) \([]\) \(36\) \(-0.71126\) \(\Gamma_0(N)\)-optimal