Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-172949x+27741661\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-172949xz^2+27741661z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-14008896x+20181644208\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 13552 \) | = | $2^{4} \cdot 7 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-3911153168384$ | = | $-1 \cdot 2^{12} \cdot 7^{2} \cdot 11^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{78843215872}{539} \) | = | $-1 \cdot 2^{18} \cdot 7^{-2} \cdot 11^{-1} \cdot 67^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5970951475737264449731228572$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.29499966938540413647508105324$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0060400503962048$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.023588691768283$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.70052093477939658295229034353$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.8020837391175863318091613741 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.802083739 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.700521 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 2.802083739\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 57600 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
| $7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2772 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2761 & 2754 \\ 1548 & 2267 \end{array}\right),\left(\begin{array}{rr} 1403 & 2754 \\ 1404 & 2753 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 1135 & 18 \\ 513 & 163 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 1571 & 2754 \\ 2232 & 2009 \end{array}\right),\left(\begin{array}{rr} 1385 & 0 \\ 0 & 2771 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 2755 & 18 \\ 2754 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[2772])$ is a degree-$68976230400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2772\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 121 = 11^{2} \) |
| $7$ | split multiplicative | $8$ | \( 1936 = 2^{4} \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 112 = 2^{4} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 13552z
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 77b3, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.668189003328.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.204526784.1 | \(\Z/9\Z\) | not in database |
| $6$ | 6.2.340736.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.185954412398361513984.1 | \(\Z/9\Z\) | not in database |
| $12$ | 12.0.116101021696.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.19093165891664452081677710655202787328.3 | \(\Z/6\Z\) | not in database |
| $18$ | 18.6.547558521975134325315731456.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | split | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.