Show commands for:
SageMath
sage: E = EllipticCurve("c1")
sage: E.isogeny_class()
Elliptic curves in class 13552c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
13552.p4 | 13552c1 | [0, 0, 0, 121, 2662] | [2] | 5120 | \(\Gamma_0(N)\)-optimal |
13552.p3 | 13552c2 | [0, 0, 0, -2299, 39930] | [2, 2] | 10240 | |
13552.p2 | 13552c3 | [0, 0, 0, -7139, -183678] | [2] | 20480 | |
13552.p1 | 13552c4 | [0, 0, 0, -36179, 2648690] | [2] | 20480 |
Rank
sage: E.rank()
The elliptic curves in class 13552c have rank \(0\).
Complex multiplication
The elliptic curves in class 13552c do not have complex multiplication.Modular form 13552.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.