Show commands: SageMath
Rank
The elliptic curves in class 1350.f have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 1350.f do not have complex multiplication.Modular form 1350.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1350.f
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1350.f1 | 1350i2 | \([1, -1, 0, -16242, -799084]\) | \(-6847995/64\) | \(-4428675000000\) | \([]\) | \(3240\) | \(1.2483\) | |
1350.f2 | 1350i1 | \([1, -1, 0, 633, -5959]\) | \(3645/4\) | \(-30754687500\) | \([3]\) | \(1080\) | \(0.69899\) | \(\Gamma_0(N)\)-optimal |