Properties

Label 135.a
Number of curves $1$
Conductor $135$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 135.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 135.a do not have complex multiplication.

Modular form 135.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - q^{5} - 3 q^{7} + 2 q^{10} - 2 q^{11} - 5 q^{13} + 6 q^{14} - 4 q^{16} - 8 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 135.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
135.a1 135a1 \([0, 0, 1, -3, 4]\) \(-12288/25\) \(-6075\) \([]\) \(12\) \(-0.58473\) \(\Gamma_0(N)\)-optimal