Properties

Label 134540.a
Number of curves $1$
Conductor $134540$
CM no
Rank $1$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 134540.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
134540.a1 134540a1 [0, 0, 0, 30752, -6315692] [] 1814400 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 134540.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 134540.a do not have complex multiplication.

Modular form 134540.2.a.a

sage: E.q_eigenform(10)
 
\( q - 3q^{3} - q^{5} - q^{7} + 6q^{9} + 5q^{11} + 3q^{13} + 3q^{15} + q^{17} + 6q^{19} + O(q^{20}) \)