Curve |
Isogeny class |
|
LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass coefficients |
Rank |
Torsion structure |
1344.a1 |
1344o2
|
1344.a |
1344o
|
$[0, -1, 0, -145, 721]$ |
$1$ |
$[2]$ |
1344.a2 |
1344o1
|
1344.a |
1344o
|
$[0, -1, 0, -5, 21]$ |
$1$ |
$[2]$ |
1344.b1 |
1344l3
|
1344.b |
1344l
|
$[0, -1, 0, -16129, -783071]$ |
$0$ |
$[2]$ |
1344.b2 |
1344l4
|
1344.b |
1344l
|
$[0, -1, 0, -1569, 3393]$ |
$0$ |
$[2]$ |
1344.b3 |
1344l2
|
1344.b |
1344l
|
$[0, -1, 0, -1009, -11951]$ |
$0$ |
$[2, 2]$ |
1344.b4 |
1344l1
|
1344.b |
1344l
|
$[0, -1, 0, -29, -387]$ |
$0$ |
$[2]$ |
1344.c1 |
1344b3
|
1344.c |
1344b
|
$[0, -1, 0, -609, 5985]$ |
$1$ |
$[2]$ |
1344.c2 |
1344b2
|
1344.c |
1344b
|
$[0, -1, 0, -49, 49]$ |
$1$ |
$[2, 2]$ |
1344.c3 |
1344b1
|
1344.c |
1344b
|
$[0, -1, 0, -29, -51]$ |
$1$ |
$[2]$ |
1344.c4 |
1344b4
|
1344.c |
1344b
|
$[0, -1, 0, 191, 193]$ |
$1$ |
$[2]$ |
1344.d1 |
1344n3
|
1344.d |
1344n
|
$[0, -1, 0, -449, 3585]$ |
$1$ |
$[4]$ |
1344.d2 |
1344n2
|
1344.d |
1344n
|
$[0, -1, 0, -89, -231]$ |
$1$ |
$[2, 2]$ |
1344.d3 |
1344n1
|
1344.d |
1344n
|
$[0, -1, 0, -84, -270]$ |
$1$ |
$[2]$ |
1344.d4 |
1344n4
|
1344.d |
1344n
|
$[0, -1, 0, 191, -1631]$ |
$1$ |
$[2]$ |
1344.e1 |
1344c1
|
1344.e |
1344c
|
$[0, -1, 0, -8, -6]$ |
$0$ |
$[2]$ |
1344.e2 |
1344c2
|
1344.e |
1344c
|
$[0, -1, 0, 7, -39]$ |
$0$ |
$[2]$ |
1344.f1 |
1344d4
|
1344.f |
1344d
|
$[0, -1, 0, -7313, -238287]$ |
$0$ |
$[2]$ |
1344.f2 |
1344d3
|
1344.f |
1344d
|
$[0, -1, 0, -453, -3675]$ |
$0$ |
$[2]$ |
1344.f3 |
1344d2
|
1344.f |
1344d
|
$[0, -1, 0, -113, -111]$ |
$0$ |
$[2]$ |
1344.f4 |
1344d1
|
1344.f |
1344d
|
$[0, -1, 0, 27, -27]$ |
$0$ |
$[2]$ |
1344.g1 |
1344a5
|
1344.g |
1344a
|
$[0, -1, 0, -50177, -4309503]$ |
$1$ |
$[2]$ |
1344.g2 |
1344a3
|
1344.g |
1344a
|
$[0, -1, 0, -3137, -66495]$ |
$1$ |
$[2, 2]$ |
1344.g3 |
1344a4
|
1344.g |
1344a
|
$[0, -1, 0, -2497, 48577]$ |
$1$ |
$[2]$ |
1344.g4 |
1344a6
|
1344.g |
1344a
|
$[0, -1, 0, -2177, -108927]$ |
$1$ |
$[2]$ |
1344.g5 |
1344a2
|
1344.g |
1344a
|
$[0, -1, 0, -257, -255]$ |
$1$ |
$[2, 2]$ |
1344.g6 |
1344a1
|
1344.g |
1344a
|
$[0, -1, 0, 63, -63]$ |
$1$ |
$[2]$ |
1344.h1 |
1344k3
|
1344.h |
1344k
|
$[0, -1, 0, -897, -10047]$ |
$0$ |
$[2]$ |
1344.h2 |
1344k2
|
1344.h |
1344k
|
$[0, -1, 0, -57, -135]$ |
$0$ |
$[2, 2]$ |
1344.h3 |
1344k1
|
1344.h |
1344k
|
$[0, -1, 0, -12, 18]$ |
$0$ |
$[2]$ |
1344.h4 |
1344k4
|
1344.h |
1344k
|
$[0, -1, 0, 63, -735]$ |
$0$ |
$[2]$ |
1344.i1 |
1344m3
|
1344.i |
1344m
|
$[0, -1, 0, -86017, -9681503]$ |
$1$ |
$[2]$ |
1344.i2 |
1344m5
|
1344.i |
1344m
|
$[0, -1, 0, -58497, 5412897]$ |
$1$ |
$[4]$ |
1344.i3 |
1344m4
|
1344.i |
1344m
|
$[0, -1, 0, -6657, -71775]$ |
$1$ |
$[2, 2]$ |
1344.i4 |
1344m2
|
1344.i |
1344m
|
$[0, -1, 0, -5377, -149855]$ |
$1$ |
$[2, 2]$ |
1344.i5 |
1344m1
|
1344.i |
1344m
|
$[0, -1, 0, -257, -3423]$ |
$1$ |
$[2]$ |
1344.i6 |
1344m6
|
1344.i |
1344m
|
$[0, -1, 0, 24703, -579807]$ |
$1$ |
$[2]$ |
1344.j1 |
1344e1
|
1344.j |
1344e
|
$[0, -1, 0, -376, 2338]$ |
$0$ |
$[2]$ |
1344.j2 |
1344e2
|
1344.j |
1344e
|
$[0, -1, 0, 839, 13273]$ |
$0$ |
$[2]$ |
1344.k1 |
1344i2
|
1344.k |
1344i
|
$[0, 1, 0, -145, -721]$ |
$0$ |
$[2]$ |
1344.k2 |
1344i1
|
1344.k |
1344i
|
$[0, 1, 0, -5, -21]$ |
$0$ |
$[2]$ |
1344.l1 |
1344q3
|
1344.l |
1344q
|
$[0, 1, 0, -449, -3585]$ |
$1$ |
$[2]$ |
1344.l2 |
1344q2
|
1344.l |
1344q
|
$[0, 1, 0, -89, 231]$ |
$1$ |
$[2, 2]$ |
1344.l3 |
1344q1
|
1344.l |
1344q
|
$[0, 1, 0, -84, 270]$ |
$1$ |
$[2]$ |
1344.l4 |
1344q4
|
1344.l |
1344q
|
$[0, 1, 0, 191, 1631]$ |
$1$ |
$[4]$ |
1344.m1 |
1344j4
|
1344.m |
1344j
|
$[0, 1, 0, -16129, 783071]$ |
$1$ |
$[2]$ |
1344.m2 |
1344j3
|
1344.m |
1344j
|
$[0, 1, 0, -1569, -3393]$ |
$1$ |
$[2]$ |
1344.m3 |
1344j2
|
1344.m |
1344j
|
$[0, 1, 0, -1009, 11951]$ |
$1$ |
$[2, 2]$ |
1344.m4 |
1344j1
|
1344.m |
1344j
|
$[0, 1, 0, -29, 387]$ |
$1$ |
$[2]$ |
1344.n1 |
1344t3
|
1344.n |
1344t
|
$[0, 1, 0, -609, -5985]$ |
$0$ |
$[2]$ |
1344.n2 |
1344t2
|
1344.n |
1344t
|
$[0, 1, 0, -49, -49]$ |
$0$ |
$[2, 2]$ |