Properties

Label 1334.a
Number of curves $2$
Conductor $1334$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1334.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1334.a1 1334b2 [1, -1, 0, -8717, -310165] [2] 1920  
1334.a2 1334b1 [1, -1, 0, -307, -9087] [2] 960 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1334.a have rank \(0\).

Complex multiplication

The elliptic curves in class 1334.a do not have complex multiplication.

Modular form 1334.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4q^{7} - q^{8} - 3q^{9} + 2q^{11} + 6q^{13} - 4q^{14} + q^{16} + 2q^{17} + 3q^{18} - 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.