Properties

Label 13328o
Number of curves $4$
Conductor $13328$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13328o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13328o do not have complex multiplication.

Modular form 13328.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - 3 q^{9} + 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 13328o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13328.p4 13328o1 \([0, 0, 0, -539, 2058]\) \(35937/17\) \(8192135168\) \([2]\) \(4608\) \(0.59632\) \(\Gamma_0(N)\)-optimal
13328.p2 13328o2 \([0, 0, 0, -4459, -113190]\) \(20346417/289\) \(139266297856\) \([2, 2]\) \(9216\) \(0.94289\)  
13328.p1 13328o3 \([0, 0, 0, -71099, -7296982]\) \(82483294977/17\) \(8192135168\) \([2]\) \(18432\) \(1.2895\)  
13328.p3 13328o4 \([0, 0, 0, -539, -305270]\) \(-35937/83521\) \(-40247960080384\) \([2]\) \(18432\) \(1.2895\)