Properties

Label 133200.z
Number of curves $1$
Conductor $133200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 133200.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
133200.z1 133200ei1 \([0, 0, 0, -224397675, -1318594011750]\) \(-991990479802737267/22190066240000\) \(-27953092723322880000000000\) \([]\) \(29859840\) \(3.6712\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 133200.z1 has rank \(0\).

Complex multiplication

The elliptic curves in class 133200.z do not have complex multiplication.

Modular form 133200.2.a.z

sage: E.q_eigenform(10)
 
\(q - 3 q^{7} - q^{11} - q^{13} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display