Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-1635x+26497\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-1635xz^2+26497z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2118987x+1242600966\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(24, 23)$ | $0.16889456262889671821078844976$ | $\infty$ |
| $(14, 73)$ | $0$ | $3$ |
Integral points
\( \left(-46, 93\right) \), \( \left(-46, -47\right) \), \( \left(-18, 233\right) \), \( \left(-18, -215\right) \), \( \left(-6, 193\right) \), \( \left(-6, -187\right) \), \( \left(14, 73\right) \), \( \left(14, -87\right) \), \( \left(22, 25\right) \), \( \left(22, -47\right) \), \( \left(24, 23\right) \), \( \left(24, -47\right) \), \( \left(38, 121\right) \), \( \left(38, -159\right) \), \( \left(94, 793\right) \), \( \left(94, -887\right) \), \( \left(174, 2153\right) \), \( \left(174, -2327\right) \), \( \left(1214, 41673\right) \), \( \left(1214, -42887\right) \)
Invariants
| Conductor: | $N$ | = | \( 1330 \) | = | $2 \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-26693632000$ | = | $-1 \cdot 2^{15} \cdot 5^{3} \cdot 7^{3} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( -\frac{483385461758641}{26693632000} \) | = | $-1 \cdot 2^{-15} \cdot 5^{-3} \cdot 7^{-3} \cdot 13^{3} \cdot 19^{-1} \cdot 6037^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.75849385766712075322242654355$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75849385766712075322242654355$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9285015318020364$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.713372319305391$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.16889456262889671821078844976$ |
|
| Real period: | $\Omega$ | ≈ | $1.1725004482280635368828150206$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 135 $ = $ ( 3 \cdot 5 )\cdot3\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.9704342557849622674195227083 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.970434256 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.172500 \cdot 0.168895 \cdot 135}{3^2} \\ & \approx 2.970434256\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2160 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $15$ | $I_{15}$ | split multiplicative | -1 | 1 | 15 | 15 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 13681 & 6 \\ 9123 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 8646 & 7321 \\ 11305 & 6651 \end{array}\right),\left(\begin{array}{rr} 15955 & 6 \\ 15954 & 7 \end{array}\right),\left(\begin{array}{rr} 9577 & 6 \\ 12771 & 19 \end{array}\right),\left(\begin{array}{rr} 3991 & 6 \\ 11973 & 19 \end{array}\right),\left(\begin{array}{rr} 7981 & 6 \\ 7983 & 19 \end{array}\right),\left(\begin{array}{rr} 4201 & 6 \\ 12603 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$549000629452800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 665 = 5 \cdot 7 \cdot 19 \) |
| $3$ | good | $2$ | \( 19 \) |
| $5$ | split multiplicative | $6$ | \( 133 = 7 \cdot 19 \) |
| $7$ | split multiplicative | $8$ | \( 190 = 2 \cdot 5 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 1330j
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.5320.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.150568768000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.3518667.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.3.2565108243000000.2 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $18$ | 18.0.7578615851015877098569503977472000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ord | split | split | ord | ord | ord | split | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | 3 | 2 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.