Learn more

Refine search


Results (1-50 of 158 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
132496.a1 132496.a \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -73096387, 436822501570]$ \(y^2=x^3-73096387x+436822501570\) 3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? $[ ]$
132496.b1 132496.b \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.311886146$ $[0, 0, 0, -405769, 36924979]$ \(y^2=x^3-405769x+36924979\) 2.2.0.a.1, 14.6.0.a.1, 28.12.0-14.a.1.2 $[(1066, 28561)]$
132496.c1 132496.c \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.644542265$ $[0, 0, 0, -15379, -399854]$ \(y^2=x^3-15379x-399854\) 2.2.0.a.1, 28.4.0-2.a.1.1, 182.6.0.?, 364.12.0.? $[(169, 1352)]$
132496.d1 132496.d \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $10.61199358$ $[0, 0, 0, -28180243, -63174871214]$ \(y^2=x^3-28180243x-63174871214\) 7.24.0.a.2, 56.48.0-7.a.2.7, 104.2.0.?, 364.48.0.?, 728.96.2.? $[(1808209/15, 1616452552/15)]$
132496.d2 132496.d \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.515999084$ $[0, 0, 0, -356083, 125092786]$ \(y^2=x^3-356083x+125092786\) 7.24.0.a.1, 56.48.0-7.a.1.7, 104.2.0.?, 364.48.0.?, 728.96.2.? $[(585, 10816)]$
132496.e1 132496.e \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.203010570$ $[0, 0, 0, -57967, 5274997]$ \(y^2=x^3-57967x+5274997\) 2.2.0.a.1, 14.6.0.a.1, 52.4.0-2.a.1.1, 364.12.0.? $[(156, 169)]$
132496.f1 132496.f \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.823613450$ $[0, 0, 0, -91, -182]$ \(y^2=x^3-91x-182\) 2.2.0.a.1, 182.6.0.?, 364.12.0.? $[(-3, 8)]$
132496.g1 132496.g \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -432523, 198826810]$ \(y^2=x^3-432523x+198826810\) 3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? $[ ]$
132496.h1 132496.h \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.169035994$ $[0, 1, 0, -28240, -1963116]$ \(y^2=x^3+x^2-28240x-1963116\) 52.2.0.a.1 $[(212, 1274)]$
132496.i1 132496.i \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.630836356$ $[0, 1, 0, -90033792, 328834457524]$ \(y^2=x^3+x^2-90033792x+328834457524\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 52.4.0-4.a.1.1, 84.16.0.?, $\ldots$ $[(8143, 368382)]$
132496.i2 132496.i \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $19.89250907$ $[0, 1, 0, 21925328, 1075333086036]$ \(y^2=x^3+x^2+21925328x+1075333086036\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 52.4.0-4.a.1.1, 84.16.0.?, $\ldots$ $[(300294495/431, 84541511386626/431)]$
132496.j1 132496.j \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.798208503$ $[0, 1, 0, -25692, -1593656]$ \(y^2=x^3+x^2-25692x-1593656\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.2, $\ldots$ $[(37069/10, 6321147/10)]$
132496.j2 132496.j \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.932736167$ $[0, 1, 0, -212, -3704]$ \(y^2=x^3+x^2-212x-3704\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.1, $\ldots$ $[(85/2, 343/2)]$
132496.k1 132496.k \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.559485640$ $[0, 1, 0, -15546197, -58153176509]$ \(y^2=x^3+x^2-15546197x-58153176509\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 36.24.0-9.a.1.3, 117.36.0.?, $\ldots$ $[(2945686/15, 4751960759/15)]$
132496.k2 132496.k \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.617720626$ $[0, 1, 0, -971637, 368981731]$ \(y^2=x^3+x^2-971637x+368981731\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 36.24.0-9.a.1.4, 117.36.0.?, $\ldots$ $[(758, 8281)]$
132496.k3 132496.k \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.853161880$ $[0, 1, 0, 1678283, 1832797539]$ \(y^2=x^3+x^2+1678283x+1832797539\) 3.12.0.a.1, 12.24.0-3.a.1.2, 117.36.0.?, 182.2.0.?, 468.72.0.?, $\ldots$ $[(-4826/3, 753571/3)]$
132496.l1 132496.l \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $8.401405465$ $[0, 1, 0, -36306664, -81671009484]$ \(y^2=x^3+x^2-36306664x-81671009484\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 $[(-429010/11, 66521104/11)]$
132496.l2 132496.l \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $16.80281093$ $[0, 1, 0, 792216, -4460820428]$ \(y^2=x^3+x^2+792216x-4460820428\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 $[(611102508/337, 15098554508422/337)]$
132496.m1 132496.m \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.222209018$ $[0, 1, 0, 3839624, 6106265556]$ \(y^2=x^3+x^2+3839624x+6106265556\) 4.4.0-4.a.1.1 $[(19853/2, 3071957/2)]$
132496.n1 132496.n \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -23781, -1691117]$ \(y^2=x^3+x^2-23781x-1691117\) 3.3.0.a.1, 9.9.0.a.1, 39.6.0.b.1, 42.6.0.b.1, 117.18.0.?, $\ldots$ $[ ]$
132496.o1 132496.o \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -11041, 38735451]$ \(y^2=x^3+x^2-11041x+38735451\) 182.2.0.? $[ ]$
132496.p1 132496.p \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.699911461$ $[0, 1, 0, -45348, -3773288]$ \(y^2=x^3+x^2-45348x-3773288\) 3.4.0.a.1, 42.8.0-3.a.1.1, 52.2.0.a.1, 156.8.0.?, 1092.16.0.? $[(7471/5, 384306/5)]$
132496.p2 132496.p \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.233303820$ $[0, 1, 0, 1972, -25544]$ \(y^2=x^3+x^2+1972x-25544\) 3.4.0.a.1, 42.8.0-3.a.1.2, 52.2.0.a.1, 156.8.0.?, 1092.16.0.? $[(95, 1014)]$
132496.q1 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.98739555$ $[0, 1, 0, -361783088, -2648745765548]$ \(y^2=x^3+x^2-361783088x-2648745765548\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ $[(195155986/87, 1496499921280/87)]$
132496.q2 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $23.97479110$ $[0, 1, 0, -22593328, -41461918380]$ \(y^2=x^3+x^2-22593328x-41461918380\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ $[(648303118740/2911, 520966755145520970/2911)]$
132496.q3 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.995798517$ $[0, 1, 0, -4706368, -3222777804]$ \(y^2=x^3+x^2-4706368x-3222777804\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$ $[(22474/3, 662480/3)]$
132496.q4 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.331932839$ $[0, 1, 0, -1393968, 632590804]$ \(y^2=x^3+x^2-1393968x+632590804\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ $[(618, 2744)]$
132496.q5 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.663865678$ $[0, 1, 0, -69008, 14099476]$ \(y^2=x^3+x^2-69008x+14099476\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ $[(4, 3718)]$
132496.q6 132496.q \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $7.991597034$ $[0, 1, 0, 593472, -295146188]$ \(y^2=x^3+x^2+593472x-295146188\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$ $[(76444, 21136830)]$
132496.r1 132496.r \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.776949395$ $[0, 1, 0, -44165, 6572047]$ \(y^2=x^3+x^2-44165x+6572047\) 182.2.0.? $[(667, 16562)]$
132496.s1 132496.s \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -4019045, -3699307949]$ \(y^2=x^3+x^2-4019045x-3699307949\) 3.3.0.a.1, 9.9.0.a.1, 39.6.0.b.1, 42.6.0.b.1, 117.18.0.?, $\ldots$ $[ ]$
132496.t1 132496.t \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.606589222$ $[0, 1, 0, 22720, 2786356]$ \(y^2=x^3+x^2+22720x+2786356\) 4.2.0.a.1, 52.4.0-4.a.1.1 $[(79, 2254)]$
132496.u1 132496.u \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $61.08356601$ $[0, 1, 0, -4342004, -3483894296]$ \(y^2=x^3+x^2-4342004x-3483894296\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.2, $\ldots$ $[(2176845978919183644973182965/392676004606, 100392035393468428098686391678719863611417/392676004606)]$
132496.u2 132496.u \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $20.36118867$ $[0, 1, 0, -35884, -7994232]$ \(y^2=x^3+x^2-35884x-7994232\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.1, $\ldots$ $[(4825967021/586, 335236962085739/586)]$
132496.v1 132496.v \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.153826841$ $[0, 1, 0, -532744, 149510388]$ \(y^2=x^3+x^2-532744x+149510388\) 3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 42.8.0-3.a.1.2, 84.32.0.? $[(1709/2, 2107/2)]$
132496.v2 132496.v \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $12.46148052$ $[0, 1, 0, 129736, 489495124]$ \(y^2=x^3+x^2+129736x+489495124\) 3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 42.8.0-3.a.1.1, 84.32.0.? $[(-291595/38, 1170592311/38)]$
132496.w1 132496.w \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $31.71959818$ $[0, 1, 0, -4772616, -4293875468]$ \(y^2=x^3+x^2-4772616x-4293875468\) 52.2.0.a.1 $[(4473924805330356/935125, 265271019239695891655246/935125)]$
132496.x1 132496.x \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.946421274$ $[0, -1, 0, -7492, 249131]$ \(y^2=x^3-x^2-7492x+249131\) 2.2.0.a.1, 14.6.0.a.1, 28.12.0-14.a.1.1 $[(35, 169), (101/2, 2197/2)]$
132496.y1 132496.y \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.371226049$ $[0, -1, 0, -1178662, 492921311]$ \(y^2=x^3-x^2-1178662x+492921311\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 12.16.0.a.1, $\ldots$ $[(425, 8281), (9985/4, 8281/4)]$
132496.y2 132496.y \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.371226049$ $[0, -1, 0, -19322, 201811]$ \(y^2=x^3-x^2-19322x+201811\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 12.16.0.a.2, $\ldots$ $[(425, 8281), (-211/2, 8281/2)]$
132496.z1 132496.z \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -42666472, 109075985264]$ \(y^2=x^3-x^2-42666472x+109075985264\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[ ]$
132496.z2 132496.z \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 394728, -292572944]$ \(y^2=x^3-x^2+394728x-292572944\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[ ]$
132496.ba1 132496.ba \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1758332, 818406016]$ \(y^2=x^3-x^2-1758332x+818406016\) 2.2.0.a.1, 28.4.0-2.a.1.1, 182.6.0.?, 364.12.0.? $[ ]$
132496.bb1 132496.bb \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $10.03172550$ $[0, -1, 0, -77115432, 237198557296]$ \(y^2=x^3-x^2-77115432x+237198557296\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 8.4.0-2.a.1.1, 9.12.0.b.1, $\ldots$ $[(-6140, 692224), (2070532, 2979332096)]$
132496.bb2 132496.bb \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $10.03172550$ $[0, -1, 0, -16829752, -26515121296]$ \(y^2=x^3-x^2-16829752x-26515121296\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 8.4.0-2.a.1.1, 9.12.0.b.1, $\ldots$ $[(-2422, 5746), (14140, 1600768)]$
132496.bc1 132496.bc \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2188944, -1310539712]$ \(y^2=x^3-x^2-2188944x-1310539712\) 5.6.0.a.1, 65.12.0.a.2, 280.12.0.?, 520.24.0.?, 728.2.0.?, $\ldots$ $[ ]$
132496.bc2 132496.bc \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 6423296, 79513610240]$ \(y^2=x^3-x^2+6423296x+79513610240\) 5.6.0.a.1, 65.12.0.a.1, 280.12.0.?, 520.24.0.?, 728.2.0.?, $\ldots$ $[ ]$
132496.bd1 132496.bd \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.818134225$ $[0, -1, 0, -576, -17408]$ \(y^2=x^3-x^2-576x-17408\) 56.2.0.b.1 $[(96, 896)]$
132496.be1 132496.be \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -714926, 232533547]$ \(y^2=x^3-x^2-714926x+232533547\) 2.2.0.a.1, 4.4.0-2.a.1.1, 14.6.0.a.1, 28.12.0-14.a.1.4 $[ ]$
132496.bf1 132496.bf \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -135256, 17823779]$ \(y^2=x^3-x^2-135256x+17823779\) 2.2.0.a.1, 14.6.0.a.1, 364.12.0.? $[ ]$
Next   displayed columns for results