Properties

Label 1323k
Number of curves $1$
Conductor $1323$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1323k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1323k do not have complex multiplication.

Modular form 1323.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 4 q^{5} - 3 q^{8} - 4 q^{10} + 2 q^{11} + q^{13} - q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1323k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1323.m1 1323k1 \([1, -1, 0, -9, -36]\) \(-147\) \(-583443\) \([]\) \(180\) \(-0.21029\) \(\Gamma_0(N)\)-optimal