sage:E = EllipticCurve("k1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 1323k1 has
rank \(0\).
|
Bad L-factors: |
Prime |
L-Factor |
\(3\) | \(1\) |
\(7\) | \(1\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(2\) |
\( 1 + 2 T^{2}\) |
1.2.a
|
\(5\) |
\( 1 + 5 T^{2}\) |
1.5.a
|
\(11\) |
\( 1 + 11 T^{2}\) |
1.11.a
|
\(13\) |
\( 1 - 2 T + 13 T^{2}\) |
1.13.ac
|
\(17\) |
\( 1 + 17 T^{2}\) |
1.17.a
|
\(19\) |
\( 1 + 7 T + 19 T^{2}\) |
1.19.h
|
\(23\) |
\( 1 + 23 T^{2}\) |
1.23.a
|
\(29\) |
\( 1 + 29 T^{2}\) |
1.29.a
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 1323k do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 1323k
sage:E.isogeny_class().curves