Properties

Label 1323.k
Number of curves $2$
Conductor $1323$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 1323.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
1323.k1 1323a2 \([0, 0, 1, 0, -16207]\) \(0\) \(-113468578083\) \([]\) \(756\) \(0.80012\)   \(-3\)
1323.k2 1323a1 \([0, 0, 1, 0, 600]\) \(0\) \(-155649627\) \([3]\) \(252\) \(0.25081\) \(\Gamma_0(N)\)-optimal \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 1323.k have rank \(1\).

Complex multiplication

Each elliptic curve in class 1323.k has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 1323.2.a.k

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + 2 q^{13} + 4 q^{16} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.