Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 1323.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
1323.k1 | 1323a2 | \([0, 0, 1, 0, -16207]\) | \(0\) | \(-113468578083\) | \([]\) | \(756\) | \(0.80012\) | \(-3\) | |
1323.k2 | 1323a1 | \([0, 0, 1, 0, 600]\) | \(0\) | \(-155649627\) | \([3]\) | \(252\) | \(0.25081\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
Rank
sage: E.rank()
The elliptic curves in class 1323.k have rank \(1\).
Complex multiplication
Each elliptic curve in class 1323.k has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 1323.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.