Properties

Label 1320.h
Number of curves $4$
Conductor $1320$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1320.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1320.h do not have complex multiplication.

Modular form 1320.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 4 q^{7} + q^{9} + q^{11} + 2 q^{13} - q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1320.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1320.h1 1320j3 \([0, -1, 0, -10560, -414180]\) \(127191074376964/495\) \(506880\) \([2]\) \(1024\) \(0.73082\)  
1320.h2 1320j2 \([0, -1, 0, -660, -6300]\) \(124386546256/245025\) \(62726400\) \([2, 2]\) \(512\) \(0.38425\)  
1320.h3 1320j4 \([0, -1, 0, -440, -10788]\) \(-9220796644/45106875\) \(-46189440000\) \([2]\) \(1024\) \(0.73082\)  
1320.h4 1320j1 \([0, -1, 0, -55, -8]\) \(1171019776/658845\) \(10541520\) \([4]\) \(256\) \(0.037675\) \(\Gamma_0(N)\)-optimal