Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2=x^3-12768x-561808\)
|
(homogenize, simplify) |
\(y^2z=x^3-12768xz^2-561808z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-12768x-561808\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 131760 \) | = | $2^{4} \cdot 3^{3} \cdot 5 \cdot 61$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-3137785344000 $ | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 61^{3} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{2081462648832}{28372625} \) | = | $-1 \cdot 2^{15} \cdot 3^{3} \cdot 5^{-3} \cdot 7^{3} \cdot 19^{3} \cdot 61^{-3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.2048006174850847480002896981\dots$ | ||
Stable Faltings height: | $0.23700036475811201573424626741\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.22438130599383301462122953447\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 3 $ = $ 1\cdot1\cdot1\cdot3 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 0.67314391798149904386368860341 $ |
Modular invariants
Modular form 131760.2.a.u
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 259200 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | Additive | -1 | 4 | 12 | 0 |
$3$ | $1$ | $II$ | Additive | -1 | 3 | 3 | 0 |
$5$ | $1$ | $I_{3}$ | Non-split multiplicative | 1 | 1 | 3 | 3 |
$61$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs | 3.12.0.1 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 61 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | - | - | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 131760.u
consists of 3 curves linked by isogenies of
degrees dividing 9.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.32940.2 | \(\Z/2\Z\) | Not in database |
$4$ | \(\Q(\zeta_{12})\) | \(\Z/3\Z \oplus \Z/3\Z\) | Not in database |
$6$ | 6.0.992814894000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$6$ | 6.2.52082092800.3 | \(\Z/6\Z\) | Not in database |
$6$ | 6.0.17360697600.3 | \(\Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$18$ | 18.6.688441319276820286477612128672563428333248000000000000.1 | \(\Z/9\Z\) | Not in database |
$18$ | 18.0.269575566812517305149385143476289536.1 | \(\Z/9\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.