Show commands: SageMath
Rank
The elliptic curves in class 13104k have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13104k do not have complex multiplication.Modular form 13104.2.a.k
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 13104k
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 13104.ba2 | 13104k1 | \([0, 0, 0, -92910, 11189747]\) | \(-7604375980288000/236743082667\) | \(-2761371316227888\) | \([2]\) | \(61440\) | \(1.7396\) | \(\Gamma_0(N)\)-optimal |
| 13104.ba1 | 13104k2 | \([0, 0, 0, -1497495, 705335654]\) | \(1989996724085074000/1843096437\) | \(343966029458688\) | \([2]\) | \(122880\) | \(2.0862\) |