Learn more

Refine search


Results (1-50 of 329 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
130050.a1 130050.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.416111220$ $[1, -1, 0, -81552, -8943534]$ \(y^2+xy=x^3-x^2-81552x-8943534\) 408.2.0.? $[(-165, 84)]$
130050.b1 130050.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 3529503, 413549901]$ \(y^2+xy=x^3-x^2+3529503x+413549901\) 68.2.0.a.1 $[ ]$
130050.c1 130050.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.698776215$ $[1, -1, 0, -11682, 488916]$ \(y^2+xy=x^3-x^2-11682x+488916\) 3.4.0.a.1, 12.8.0.b.1, 255.8.0.?, 1020.16.0.? $[(60, 6), (28, 414)]$
130050.c2 130050.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.698776215$ $[1, -1, 0, -207, 81]$ \(y^2+xy=x^3-x^2-207x+81\) 3.4.0.a.1, 12.8.0.b.1, 255.8.0.?, 1020.16.0.? $[(-12, 33), (15, 6)]$
130050.d1 130050.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -48912, -4151404]$ \(y^2+xy=x^3-x^2-48912x-4151404\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.y.1, 60.12.0.bm.1, 68.12.0.n.1, $\ldots$ $[ ]$
130050.d2 130050.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3012, -66304]$ \(y^2+xy=x^3-x^2-3012x-66304\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.y.1, 60.12.0.bn.1, 68.12.0.n.1, $\ldots$ $[ ]$
130050.e1 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $6.686234800$ $[1, -1, 0, -346812192, 2486021004216]$ \(y^2+xy=x^3-x^2-346812192x+2486021004216\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(10749, -4812), (10935, 27459)]$
130050.e2 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $26.74493920$ $[1, -1, 0, -29490192, 8396838216]$ \(y^2+xy=x^3-x^2-29490192x+8396838216\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$ $[(285, 3759), (6643, 321659)]$
130050.e3 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.686234800$ $[1, -1, 0, -21687192, 38805129216]$ \(y^2+xy=x^3-x^2-21687192x+38805129216\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$ $[(1560, 92856), (3243, 49098)]$
130050.e4 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $26.74493920$ $[1, -1, 0, -18761067, -31272638409]$ \(y^2+xy=x^3-x^2-18761067x-31272638409\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$ $[(-2505, 816), (6235, 303656)]$
130050.e5 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $6.686234800$ $[1, -1, 0, -4455567, 3119084091]$ \(y^2+xy=x^3-x^2-4455567x+3119084091\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(489, 32268), (1645, 14639)]$
130050.e6 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.686234800$ $[1, -1, 0, -1204317, -460542159]$ \(y^2+xy=x^3-x^2-1204317x-460542159\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$ $[(-771, 3423), (-561, 6468)]$
130050.e7 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $1.671558700$ $[1, -1, 0, -879192, 1038609216]$ \(y^2+xy=x^3-x^2-879192x+1038609216\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$ $[(-336, 36168), (-21, 32523)]$
130050.e8 130050.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $1.671558700$ $[1, -1, 0, 96183, -35278659]$ \(y^2+xy=x^3-x^2+96183x-35278659\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$ $[(999, 32013), (285, 3759)]$
130050.f1 130050.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -114802992, 473477342116]$ \(y^2+xy=x^3-x^2-114802992x+473477342116\) 12.2.0.a.1 $[ ]$
130050.g1 130050.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -39265617, 94713169041]$ \(y^2+xy=x^3-x^2-39265617x+94713169041\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.y.1, 60.12.0.bm.1, 68.12.0.n.1, $\ldots$ $[ ]$
130050.g2 130050.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2418117, 1525841541]$ \(y^2+xy=x^3-x^2-2418117x+1525841541\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.y.1, 60.12.0.bn.1, 68.12.0.n.1, $\ldots$ $[ ]$
130050.h1 130050.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -28374567, 58185560591]$ \(y^2+xy=x^3-x^2-28374567x+58185560591\) 13.42.0.a.1, 221.84.2.?, 520.84.2.?, 680.2.0.?, 3315.168.2.?, $\ldots$ $[ ]$
130050.h2 130050.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -31317, -3131659]$ \(y^2+xy=x^3-x^2-31317x-3131659\) 13.42.0.a.2, 221.84.2.?, 520.84.2.?, 680.2.0.?, 3315.168.2.?, $\ldots$ $[ ]$
130050.i1 130050.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.103758344$ $[1, -1, 0, -30032067, 62858346341]$ \(y^2+xy=x^3-x^2-30032067x+62858346341\) 2.3.0.a.1, 60.6.0.c.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? $[(-5609/2, 2563259/2)]$
130050.i2 130050.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.551879172$ $[1, -1, 0, -554067, 2340012341]$ \(y^2+xy=x^3-x^2-554067x+2340012341\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? $[(2374, 118813)]$
130050.j1 130050.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.082740538$ $[1, -1, 0, 161208, 264551616]$ \(y^2+xy=x^3-x^2+161208x+264551616\) 24.2.0.b.1 $[(795, 29514)]$
130050.k1 130050.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.607590999$ $[1, -1, 0, -8682192, -10068961284]$ \(y^2+xy=x^3-x^2-8682192x-10068961284\) 6.2.0.a.1 $[(5130, 280944)]$
130050.l1 130050.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.462231315$ $[1, -1, 0, -33867, 1785591]$ \(y^2+xy=x^3-x^2-33867x+1785591\) 408.2.0.? $[(183, 1209)]$
130050.m1 130050.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.878493803$ $[1, -1, 0, -4260492, -2688898334]$ \(y^2+xy=x^3-x^2-4260492x-2688898334\) 408.2.0.? $[(-151989/10, 17306929/10)]$
130050.n1 130050.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -18200661417, 961569264673741]$ \(y^2+xy=x^3-x^2-18200661417x+961569264673741\) 40.2.0.a.1 $[ ]$
130050.o1 130050.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -42950367, 121466910541]$ \(y^2+xy=x^3-x^2-42950367x+121466910541\) 17.72.1.b.2, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ $[ ]$
130050.o2 130050.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -684117, -217623209]$ \(y^2+xy=x^3-x^2-684117x-217623209\) 17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ $[ ]$
130050.p1 130050.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1796349492, 29304952537666]$ \(y^2+xy=x^3-x^2-1796349492x+29304952537666\) 5.12.0.a.2, 40.24.0-5.a.2.5, 255.24.0.?, 408.2.0.?, 2040.48.1.? $[ ]$
130050.p2 130050.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4234482, -74243084]$ \(y^2+xy=x^3-x^2-4234482x-74243084\) 5.12.0.a.1, 40.24.0-5.a.1.5, 255.24.0.?, 408.2.0.?, 2040.48.1.? $[ ]$
130050.q1 130050.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.149748248$ $[1, -1, 0, -944217, 354091041]$ \(y^2+xy=x^3-x^2-944217x+354091041\) 4.4.0.a.1, 5.6.0.a.1, 20.48.1.a.2, 68.8.0.b.1, 85.12.0.?, $\ldots$ $[(1084, 24023)]$
130050.q2 130050.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.748741244$ $[1, -1, 0, 6793758, -5797599084]$ \(y^2+xy=x^3-x^2+6793758x-5797599084\) 4.4.0.a.1, 5.6.0.a.1, 20.48.1.a.1, 68.8.0.b.1, 85.12.0.?, $\ldots$ $[(287284/19, 69983202/19)]$
130050.r1 130050.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.799793155$ $[1, -1, 0, -14626242, -11385839084]$ \(y^2+xy=x^3-x^2-14626242x-11385839084\) 5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ $[(-3081, 68053)]$
130050.r2 130050.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.959958631$ $[1, -1, 0, -6834717, 6879182341]$ \(y^2+xy=x^3-x^2-6834717x+6879182341\) 5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ $[(1509, -712)]$
130050.s1 130050.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -31809417, -71827849459]$ \(y^2+xy=x^3-x^2-31809417x-71827849459\) 408.2.0.? $[ ]$
130050.t1 130050.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $40.85869916$ $[1, -1, 0, -1067657667, -13427184341259]$ \(y^2+xy=x^3-x^2-1067657667x-13427184341259\) 2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.? $[(8578735310871429913/6772559, 24684952107990052439473861911/6772559)]$
130050.t2 130050.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $20.42934958$ $[1, -1, 0, -65405667, -218505233259]$ \(y^2+xy=x^3-x^2-65405667x-218505233259\) 2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.? $[(363837696873/1399, 218996650314823791/1399)]$
130050.u1 130050.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -489042, -113893884]$ \(y^2+xy=x^3-x^2-489042x-113893884\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 120.12.0.?, $\ldots$ $[ ]$
130050.u2 130050.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 811458, -617187384]$ \(y^2+xy=x^3-x^2+811458x-617187384\) 2.3.0.a.1, 4.6.0.a.1, 60.12.0-4.a.1.2, 68.12.0.d.1, 408.24.0.?, $\ldots$ $[ ]$
130050.v1 130050.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.472946541$ $[1, -1, 0, -2049642, 1232903916]$ \(y^2+xy=x^3-x^2-2049642x+1232903916\) 5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ $[(2529, 109278)]$
130050.v2 130050.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.364732705$ $[1, -1, 0, 1266633, -87659847459]$ \(y^2+xy=x^3-x^2+1266633x-87659847459\) 5.6.0.a.1, 85.12.0.?, 120.12.0.?, 255.24.0.?, 408.2.0.?, $\ldots$ $[(1667259/19, 870159177/19)]$
130050.w1 130050.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -176706792, 161170214616]$ \(y^2+xy=x^3-x^2-176706792x+161170214616\) 2.3.0.a.1, 8.6.0.f.1, 68.6.0.c.1, 136.12.0.? $[ ]$
130050.w2 130050.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -132489792, 586051367616]$ \(y^2+xy=x^3-x^2-132489792x+586051367616\) 2.3.0.a.1, 8.6.0.f.1, 34.6.0.a.1, 136.12.0.? $[ ]$
130050.x1 130050.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $53.19201922$ $[1, -1, 0, -302725242, -2027241623084]$ \(y^2+xy=x^3-x^2-302725242x-2027241623084\) 5.6.0.a.1, 40.12.0.bx.2, 85.12.0.?, 255.24.0.?, 680.24.1.?, $\ldots$ $[(1306166886856499215565319/3226937501, 1475470558002979646450083709822611153/3226937501)]$
130050.x2 130050.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.63840384$ $[1, -1, 0, 1266633, -693606209]$ \(y^2+xy=x^3-x^2+1266633x-693606209\) 5.6.0.a.1, 40.12.0.bx.1, 85.12.0.?, 255.24.0.?, 680.24.1.?, $\ldots$ $[(219291/17, 128488964/17)]$
130050.y1 130050.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4746267, 3865968891]$ \(y^2+xy=x^3-x^2-4746267x+3865968891\) 2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.2, $\ldots$ $[ ]$
130050.y2 130050.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4708017, 3933097641]$ \(y^2+xy=x^3-x^2-4708017x+3933097641\) 2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.1, 34.6.0.a.1, $\ldots$ $[ ]$
130050.y3 130050.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -653517, -203180859]$ \(y^2+xy=x^3-x^2-653517x-203180859\) 2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.18.0.a.1, 20.36.0.b.1, $\ldots$ $[ ]$
130050.y4 130050.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -41517, -3056859]$ \(y^2+xy=x^3-x^2-41517x-3056859\) 2.3.0.a.1, 5.6.0.a.1, 8.6.0.f.1, 10.36.0.b.2, 34.6.0.a.1, $\ldots$ $[ ]$
130050.z1 130050.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -163917, -16175759]$ \(y^2+xy=x^3-x^2-163917x-16175759\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? $[ ]$
Next   displayed columns for results