Minimal Weierstrass equation
\(y^2=x^3+x^2-21003621x-700462254381\)
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 129360 \) | = | \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-211362415975530914088529920 \) | = | \(-1 \cdot 2^{12} \cdot 3 \cdot 5 \cdot 7^{7} \cdot 11^{15} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{2126464142970105856}{438611057788643355} \) | = | \(-1 \cdot 2^{12} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{-15} \cdot 179^{3} \cdot 449^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.025072448596868652289407224786\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 4 \) = \( 1\cdot1\cdot1\cdot2^{2}\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(25\) = $5^2$ (exact) |
Modular invariants
Modular form 129360.2.a.eq
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 57600000 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 2.5072448596868652289407224786394761662 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(II^{*}\) | Additive | -1 | 4 | 12 | 0 |
\(3\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
\(5\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(7\) | \(4\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
\(11\) | \(1\) | \(I_{15}\) | Non-split multiplicative | 1 | 1 | 15 | 15 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(5\) | B.4.2 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | nonsplit | add | nonsplit | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | - | 3 | 2 | - | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class 129360gd
consists of 2 curves linked by isogenies of
degree 5.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.4620.1 | \(\Z/2\Z\) | Not in database |
$4$ | 4.0.98000.1 | \(\Z/5\Z\) | Not in database |
$6$ | 6.0.24652782000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/3\Z\) | Not in database |
$10$ | 10.2.1034218810652343750000000000.1 | \(\Z/5\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.