# Properties

 Label 1290l1 Conductor $1290$ Discriminant $-13932000$ j-invariant $$-\frac{10091699281}{13932000}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -45, 195])

gp: E = ellinit([1, 1, 1, -45, 195])

magma: E := EllipticCurve([1, 1, 1, -45, 195]);

$$y^2+xy+y=x^3+x^2-45x+195$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(13, 38\right)$$ $$\hat{h}(P)$$ ≈ $0.054148638135772839525659335898$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-7, 18\right)$$, $$\left(-7, -12\right)$$, $$\left(-5, 20\right)$$, $$\left(-5, -16\right)$$, $$\left(3, 8\right)$$, $$\left(3, -12\right)$$, $$\left(9, 20\right)$$, $$\left(9, -30\right)$$, $$\left(13, 38\right)$$, $$\left(13, -52\right)$$, $$\left(283, 4628\right)$$, $$\left(283, -4912\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1290$$ = $$2 \cdot 3 \cdot 5 \cdot 43$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-13932000$$ = $$-1 \cdot 2^{5} \cdot 3^{4} \cdot 5^{3} \cdot 43$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{10091699281}{13932000}$$ = $$-1 \cdot 2^{-5} \cdot 3^{-4} \cdot 5^{-3} \cdot 43^{-1} \cdot 2161^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.063256055161302202407996012778\dots$$ Stable Faltings height: $$0.063256055161302202407996012778\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.054148638135772839525659335898\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$2.0089732892529959715095682368\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$30$$  = $$5\cdot2\cdot3\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4q^{11} - q^{12} - 5q^{13} - q^{14} - q^{15} + q^{16} - 8q^{17} + q^{18} - 5q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 480 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.2634950299258133186943882408389531510$$

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5
$$3$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$5$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$43$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary nonsplit ordinary 3 1 4 1 1 1 1 3 3 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 1290l consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.1720.1 $$\Z/2\Z$$ Not in database $6$ 6.0.5088448000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.9690085451952.6 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.