Minimal Weierstrass equation
\(y^2+xy+y=x^3+x^2-45x+195\)
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \(\left(13, 38\right)\) ![]() |
\(\hat{h}(P)\) | ≈ | $0.054148638135772839525659335898$ |
Integral points
\( \left(-7, 18\right) \), \( \left(-7, -12\right) \), \( \left(-5, 20\right) \), \( \left(-5, -16\right) \), \( \left(3, 8\right) \), \( \left(3, -12\right) \), \( \left(9, 20\right) \), \( \left(9, -30\right) \), \( \left(13, 38\right) \), \( \left(13, -52\right) \), \( \left(283, 4628\right) \), \( \left(283, -4912\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 1290 \) | = | \(2 \cdot 3 \cdot 5 \cdot 43\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-13932000 \) | = | \(-1 \cdot 2^{5} \cdot 3^{4} \cdot 5^{3} \cdot 43 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{10091699281}{13932000} \) | = | \(-1 \cdot 2^{-5} \cdot 3^{-4} \cdot 5^{-3} \cdot 43^{-1} \cdot 2161^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(0.063256055161302202407996012778\dots\) | ||
Stable Faltings height: | \(0.063256055161302202407996012778\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.054148638135772839525659335898\dots\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(2.0089732892529959715095682368\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 30 \) = \( 5\cdot2\cdot3\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 480 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 3.2634950299258133186943882408389531510 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(5\) | \(I_{5}\) | Split multiplicative | -1 | 1 | 5 | 5 |
\(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | 1 | 1 | 4 | 4 |
\(5\) | \(3\) | \(I_{3}\) | Split multiplicative | -1 | 1 | 3 | 3 |
\(43\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | split | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | nonsplit | ordinary |
$\lambda$-invariant(s) | 3 | 1 | 4 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has no rational isogenies. Its isogeny class 1290.l consists of this curve only.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.1720.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.5088448000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | 8.2.9690085451952.6 | \(\Z/3\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.