Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 128.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
128.a1 | 128a2 | [0, 1, 0, -9, 7] | [2] | 8 | |
128.a2 | 128a1 | [0, 1, 0, 1, 1] | [2] | 4 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 128.a have rank \(1\).
Complex multiplication
The elliptic curves in class 128.a do not have complex multiplication.Modular form 128.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.