Show commands for:
SageMath
sage: E = EllipticCurve("cv1")
sage: E.isogeny_class()
Elliptic curves in class 127050cv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
127050.cr3 | 127050cv1 | [1, 0, 1, -10651, 266198] | [2] | 491520 | \(\Gamma_0(N)\)-optimal |
127050.cr2 | 127050cv2 | [1, 0, 1, -71151, -7114802] | [2, 2] | 983040 | |
127050.cr4 | 127050cv3 | [1, 0, 1, 19599, -23994302] | [2] | 1966080 | |
127050.cr1 | 127050cv4 | [1, 0, 1, -1129901, -462377302] | [2] | 1966080 |
Rank
sage: E.rank()
The elliptic curves in class 127050cv have rank \(1\).
Complex multiplication
The elliptic curves in class 127050cv do not have complex multiplication.Modular form 127050.2.a.cv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.