Show commands for:
SageMath
sage: E = EllipticCurve("12705.g1")
sage: E.isogeny_class()
Elliptic curves in class 12705.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
12705.g1 | 12705n3 | [1, 0, 0, -13615, 610292] | [2] | 23040 | |
12705.g2 | 12705n2 | [1, 0, 0, -910, 8075] | [2, 2] | 11520 | |
12705.g3 | 12705n1 | [1, 0, 0, -305, -1968] | [2] | 5760 | \(\Gamma_0(N)\)-optimal |
12705.g4 | 12705n4 | [1, 0, 0, 2115, 51030] | [2] | 23040 |
Rank
sage: E.rank()
The elliptic curves in class 12705.g have rank \(0\).
Modular form 12705.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.