Properties

Label 1270080.pn1
Conductor $1270080$
Discriminant $-1.423\times 10^{20}$
j-invariant \( -\frac{15590912409}{78125} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-6355692x-6193904976\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-6355692xz^2-6193904976z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-6355692x-6193904976\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -6355692, -6193904976])
 
gp: E = ellinit([0, 0, 0, -6355692, -6193904976])
 
magma: E := EllipticCurve([0, 0, 0, -6355692, -6193904976]);
 
oscar: E = EllipticCurve([0, 0, 0, -6355692, -6193904976])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 1270080 \)  =  $2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-142275702804480000000 $  =  $-1 \cdot 2^{18} \cdot 3^{10} \cdot 5^{7} \cdot 7^{6} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{15590912409}{78125} \)  =  $-1 \cdot 3^{2} \cdot 5^{-7} \cdot 1201^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.7143472059508806243626390714\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-0.21383887997345206847858984661\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0070302306950922\dots$
Szpiro ratio: $4.170652208347135\dots$

BSD invariants

Analytic rank: $0$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $1$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.047527906750374259648726028398\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 42 $  = $ 2\cdot3\cdot7\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L(E,1) $ ≈ $ 1.9961720835157189052464931927 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 1.996172084 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.047528 \cdot 1.000000 \cdot 42}{1^2} \approx 1.996172084$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 1270080.2.a.pn

\( q + q^{5} - 2 q^{11} - 2 q^{13} + 4 q^{17} - 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 42577920
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{8}^{*}$ Additive 1 6 18 0
$3$ $3$ $IV^{*}$ Additive -1 4 10 0
$5$ $7$ $I_{7}$ Split multiplicative -1 1 7 7
$7$ $1$ $I_0^{*}$ Additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$7$ 7B 7.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[2507, 14, 2506, 15], [8, 5, 91, 57], [1887, 1432, 1274, 1567], [1273, 2506, 1274, 2505], [1, 14, 0, 1], [1763, 2506, 2261, 2421], [1259, 0, 0, 2519], [1, 0, 14, 1], [2511, 2510, 1442, 2411], [631, 14, 637, 99]]
 
GL(2,Integers(2520)).subgroup(gens)
 
Gens := [[2507, 14, 2506, 15], [8, 5, 91, 57], [1887, 1432, 1274, 1567], [1273, 2506, 1274, 2505], [1, 14, 0, 1], [1763, 2506, 2261, 2421], [1259, 0, 0, 2519], [1, 0, 14, 1], [2511, 2510, 1442, 2411], [631, 14, 637, 99]];
 
sub<GL(2,Integers(2520))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \), index $96$, genus $2$, and generators

$\left(\begin{array}{rr} 2507 & 14 \\ 2506 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 1887 & 1432 \\ 1274 & 1567 \end{array}\right),\left(\begin{array}{rr} 1273 & 2506 \\ 1274 & 2505 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1763 & 2506 \\ 2261 & 2421 \end{array}\right),\left(\begin{array}{rr} 1259 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 2511 & 2510 \\ 1442 & 2411 \end{array}\right),\left(\begin{array}{rr} 631 & 14 \\ 637 & 99 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[2520])$ is a degree-$60197437440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2520\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 7.
Its isogeny class 1270080.pn consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 405.b1, its twist by $-56$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.