Properties

Label 126852c
Number of curves 2
Conductor 126852
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("126852.e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 126852c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
126852.e2 126852c1 [0, -1, 0, 2563, 26730] [2] 172800 \(\Gamma_0(N)\)-optimal
126852.e1 126852c2 [0, -1, 0, -11852, 240072] [2] 345600  

Rank

sage: E.rank()
 

The elliptic curves in class 126852c have rank \(1\).

Modular form 126852.2.a.e

sage: E.q_eigenform(10)
 
\( q - q^{3} + 2q^{5} - 2q^{7} + q^{9} - q^{11} + 2q^{13} - 2q^{15} - 4q^{17} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.