Properties

Label 126400z
Number of curves $1$
Conductor $126400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126400z1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126400z do not have complex multiplication.

Modular form 126400.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - q^{7} + 6 q^{9} + 6 q^{11} - q^{13} + 4 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126400z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126400.c1 126400z1 \([0, 0, 0, -700, -2000]\) \(148176/79\) \(20224000000\) \([]\) \(161280\) \(0.66885\) \(\Gamma_0(N)\)-optimal