Properties

Label 126400v
Number of curves $1$
Conductor $126400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126400v1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126400v do not have complex multiplication.

Modular form 126400.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} + 5 q^{11} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126400v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126400.bd1 126400v1 \([0, -1, 0, -3576383, -2602047863]\) \(-5058897720777362944/2465195\) \(-2465195000000\) \([]\) \(1133568\) \(2.1490\) \(\Gamma_0(N)\)-optimal