Show commands: SageMath
Rank
The elliptic curves in class 126400n have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 126400n do not have complex multiplication.Modular form 126400.2.a.n
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 126400n
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
126400.f2 | 126400n1 | \([0, 1, 0, 1967, -5937]\) | \(3286064/1975\) | \(-505600000000\) | \([2]\) | \(122880\) | \(0.93502\) | \(\Gamma_0(N)\)-optimal |
126400.f1 | 126400n2 | \([0, 1, 0, -8033, -55937]\) | \(55990084/31205\) | \(31953920000000\) | \([2]\) | \(245760\) | \(1.2816\) |