Show commands: SageMath
Rank
The elliptic curves in class 126400cj have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 126400cj do not have complex multiplication.Modular form 126400.2.a.cj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 126400cj
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
126400.m2 | 126400cj1 | \([0, 1, 0, 967, 85063]\) | \(1560896/49375\) | \(-3160000000000\) | \([2]\) | \(245760\) | \(1.0785\) | \(\Gamma_0(N)\)-optimal |
126400.m1 | 126400cj2 | \([0, 1, 0, -24033, 1360063]\) | \(2998442888/156025\) | \(79884800000000\) | \([2]\) | \(491520\) | \(1.4250\) |