Properties

Label 126.b1
Conductor 126
Discriminant 18289152
j-invariant \( \frac{2251439055699625}{25088} \)
CM no
Rank 0
Torsion Structure \(\Z/{6}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 1, -24575, 1488935]); // or
 
magma: E := EllipticCurve("126a6");
 
sage: E = EllipticCurve([1, -1, 1, -24575, 1488935]) # or
 
sage: E = EllipticCurve("126a6")
 
gp: E = ellinit([1, -1, 1, -24575, 1488935]) \\ or
 
gp: E = ellinit("126a6")
 

\( y^2 + x y + y = x^{3} - x^{2} - 24575 x + 1488935 \)

Mordell-Weil group structure

\(\Z/{6}\Z\)

Torsion generators

magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 

\( \left(75, 214\right) \)

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 

\( \left(75, 214\right) \), \( \left(91, -42\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 126 \)  =  \(2 \cdot 3^{2} \cdot 7\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(18289152 \)  =  \(2^{9} \cdot 3^{6} \cdot 7^{2} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{2251439055699625}{25088} \)  =  \(2^{-9} \cdot 5^{3} \cdot 7^{-2} \cdot 11^{3} \cdot 2383^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(1.53054544808\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 36 \)  = \( 3^{2}\cdot2\cdot2 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(6\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 126.2.a.b

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q + q^{2} + q^{4} + q^{7} + q^{8} - 4q^{13} + q^{14} + q^{16} - 6q^{17} + 2q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 144
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 1.53054544808 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(9\) \( I_{9} \) Split multiplicative -1 1 9 9
\(3\) \(2\) \( I_0^{*} \) Additive -1 2 6 0
\(7\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X17.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 5 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 7
Reduction type split add split
$\lambda$-invariant(s) 2 - 1
$\mu$-invariant(s) 0 - 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 126.b consists of 6 curves linked by isogenies of degrees dividing 18.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{2}) \) \(\Z/2\Z \times \Z/6\Z\) Not in database
3 3.3.3969.1 \(\Z/18\Z\) Not in database
4 4.0.14112.1 \(\Z/12\Z\) Not in database
6 6.0.964467.3 \(\Z/18\Z\) Not in database
6.6.8065516032.1 \(\Z/2\Z \times \Z/18\Z\) Not in database
6.0.5250987.1 \(\Z/3\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.