# Properties

 Label 124950de4 Conductor 124950 Discriminant 49744945778062500 j-invariant $$\frac{576615941610337}{27060804}$$ CM no Rank 2 Torsion Structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -2124176, 1191383498]); // or

magma: E := EllipticCurve("124950de4");

sage: E = EllipticCurve([1, 0, 1, -2124176, 1191383498]) # or

sage: E = EllipticCurve("124950de4")

gp: E = ellinit([1, 0, 1, -2124176, 1191383498]) \\ or

gp: E = ellinit("124950de4")

$$y^2 + x y + y = x^{3} - 2124176 x + 1191383498$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-1564, 27021\right)$$ $$\left(816, 841\right)$$ $$\hat{h}(P)$$ ≈ 3.72617802684 0.456842079446

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(837, -419\right)$$, $$\left(\frac{3383}{4}, -\frac{3387}{8}\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-1683, 841\right)$$, $$\left(-1564, 27021\right)$$, $$\left(-633, 48091\right)$$, $$\left(-213, 40531\right)$$, $$\left(102, 31186\right)$$, $$\left(767, 3291\right)$$, $$\left(816, 841\right)$$, $$\left(837, -419\right)$$, $$\left(852, 61\right)$$, $$\left(858, 379\right)$$, $$\left(867, 841\right)$$, $$\left(918, 3442\right)$$, $$\left(1037, 9681\right)$$, $$\left(1152, 15961\right)$$, $$\left(1887, 61531\right)$$, $$\left(2652, 117886\right)$$, $$\left(4386, 273946\right)$$, $$\left(8517, 770941\right)$$, $$\left(12087, 1313581\right)$$, $$\left(51867, 11781841\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$124950$$ = $$2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$49744945778062500$$ = $$2^{2} \cdot 3^{4} \cdot 5^{6} \cdot 7^{6} \cdot 17^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{576615941610337}{27060804}$$ = $$2^{-2} \cdot 3^{-4} \cdot 17^{-4} \cdot 83233^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.971719181489$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.335858167885$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$512$$  = $$2\cdot2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$4$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 124950.2.a.cp

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} - 4q^{11} + q^{12} - 2q^{13} + q^{16} + q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 3145728 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L^{(2)}(E,1)/2!$$ ≈ $$10.4435143678$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$5$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0
$$7$$ $$4$$ $$I_0^{*}$$ Additive -1 2 6 0
$$17$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X203.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 3 \end{array}\right)$ and has index 48.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split add add ordinary ordinary split ordinary ss ordinary ordinary ordinary ordinary ordinary ss 9 3 - - 2 2 3 2 2,2 2 2 2 2 2 2,2 0 0 - - 0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 124950de consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{35})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
4 $$\Q(\sqrt{2}, \sqrt{-35})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-2}, \sqrt{-35})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.