Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-3700x+322750\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-3700xz^2+322750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4795875x+15130158750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-15, 620)$ | $0.62856780368996288452186377281$ | $\infty$ |
Integral points
\( \left(-15, 620\right) \), \( \left(-15, -605\right) \), \( \left(35, 470\right) \), \( \left(35, -505\right) \)
Invariants
Conductor: | $N$ | = | \( 124950 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-42188196093750$ | = | $-1 \cdot 2 \cdot 3^{3} \cdot 5^{8} \cdot 7^{6} \cdot 17 $ |
|
j-invariant: | $j$ | = | \( -\frac{121945}{918} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-3} \cdot 5 \cdot 17^{-1} \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2974362123419533086471354427$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.74847747047510359363938048451$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8553860369079624$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.314846714944941$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.62856780368996288452186377281$ |
|
Real period: | $\Omega$ | ≈ | $0.55189748546412042912528406821$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot1\cdot3\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.0814299418011723669633095936 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.081429942 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.551897 \cdot 0.628568 \cdot 6}{1^2} \\ & \approx 2.081429942\end{aligned}$$
Modular invariants
Modular form 124950.2.a.q
For more coefficients, see the Downloads section to the right.
Modular degree: | 518400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 408 = 2^{3} \cdot 3 \cdot 17 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 407 & 2 \\ 406 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 103 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 137 & 2 \\ 137 & 3 \end{array}\right),\left(\begin{array}{rr} 205 & 2 \\ 205 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 407 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[408])$ is a degree-$2887778304$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/408\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 62475 = 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 41650 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
$5$ | additive | $14$ | \( 4998 = 2 \cdot 3 \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $26$ | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 124950.q consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 2550.r1, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.10200.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.42448320000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | add | ord | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 3,1 | 1 | 3 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.