Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-369x+513\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-369xz^2+513z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-29916x+284256\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1, 12)$ | $1.7482494487637116152547544864$ | $\infty$ |
$(-7, 52)$ | $0$ | $4$ |
Integral points
\((-7,\pm 52)\), \((1,\pm 12)\), \( \left(19, 0\right) \), \((32,\pm 143)\), \((71,\pm 572)\)
Invariants
Conductor: | $N$ | = | \( 1248 \) | = | $2^{5} \cdot 3 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $3158618112$ | = | $2^{12} \cdot 3^{3} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{1360251712}{771147} \) | = | $2^{6} \cdot 3^{-3} \cdot 13^{-4} \cdot 277^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.51271634234938137039558294885$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18043083821056393902164917261$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.069422794221752$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.11663302972232$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7482494487637116152547544864$ |
|
Real period: | $\Omega$ | ≈ | $1.2206352993932699825054064318$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.1339749893058123379666515086 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.133974989 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.220635 \cdot 1.748249 \cdot 16}{4^2} \\ & \approx 2.133974989\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 768 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{3}^{*}$ | additive | -1 | 5 | 12 | 0 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 306 & 307 \end{array}\right),\left(\begin{array}{rr} 212 & 1 \\ 127 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 203 & 198 \\ 122 & 275 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 145 & 8 \\ 268 & 33 \end{array}\right),\left(\begin{array}{rr} 120 & 281 \\ 265 & 252 \end{array}\right),\left(\begin{array}{rr} 305 & 8 \\ 304 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$40255488$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 3 \) |
$3$ | nonsplit multiplicative | $4$ | \( 416 = 2^{5} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 96 = 2^{5} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 1248h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.519168.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.47775744.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.9703274840064.17 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.8.87329473560576.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.4093569073152.30 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | ss | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 1 | 7 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.