Properties

Label 1248.j
Number of curves $2$
Conductor $1248$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1248.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1248.j1 1248c1 \([0, 1, 0, -2902, -61132]\) \(42246001231552/14414517\) \(922529088\) \([2]\) \(768\) \(0.69180\) \(\Gamma_0(N)\)-optimal
1248.j2 1248c2 \([0, 1, 0, -2497, -78385]\) \(-420526439488/390971529\) \(-1601419382784\) \([2]\) \(1536\) \(1.0384\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1248.j have rank \(0\).

Complex multiplication

The elliptic curves in class 1248.j do not have complex multiplication.

Modular form 1248.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2q^{5} + 2q^{7} + q^{9} - 2q^{11} - q^{13} + 2q^{15} + 6q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.