Properties

Label 1248.d
Number of curves $2$
Conductor $1248$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1248.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1248.d1 1248b2 \([0, -1, 0, -1313, -17871]\) \(61162984000/41067\) \(168210432\) \([2]\) \(640\) \(0.51681\)  
1248.d2 1248b1 \([0, -1, 0, -98, -132]\) \(1643032000/767637\) \(49128768\) \([2]\) \(320\) \(0.17024\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1248.d have rank \(0\).

Complex multiplication

The elliptic curves in class 1248.d do not have complex multiplication.

Modular form 1248.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} + 4 q^{11} + q^{13} - 6 q^{17} + 6 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.