Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
1248.a1 |
1248a1 |
1248.a |
1248a |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$312$ |
$48$ |
$0$ |
$0.833215920$ |
$1$ |
|
$5$ |
$128$ |
$-0.358298$ |
$5088448/1053$ |
$[0, -1, 0, -14, -12]$ |
\(y^2=x^3-x^2-14x-12\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
1248.a2 |
1248a2 |
1248.a |
1248a |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{12} \cdot 3^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$312$ |
$48$ |
$0$ |
$0.416607960$ |
$1$ |
|
$11$ |
$256$ |
$-0.011725$ |
$778688/1521$ |
$[0, -1, 0, 31, -111]$ |
\(y^2=x^3-x^2+31x-111\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$ |
1248.b1 |
1248h2 |
1248.b |
1248h |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{9} \cdot 3^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$6.992997795$ |
$1$ |
|
$1$ |
$768$ |
$0.512716$ |
$11339065490696/351$ |
$[0, -1, 0, -3744, -86940]$ |
\(y^2=x^3-x^2-3744x-86940\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.4, $\ldots$ |
1248.b2 |
1248h3 |
1248.b |
1248h |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3^{3} \cdot 13^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1.748249448$ |
$1$ |
|
$9$ |
$768$ |
$0.512716$ |
$1360251712/771147$ |
$[0, -1, 0, -369, 513]$ |
\(y^2=x^3-x^2-369x+513\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 12.24.0-12.h.1.2, 104.24.0.?, 312.48.0.? |
1248.b3 |
1248h1 |
1248.b |
1248h |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$312$ |
$48$ |
$0$ |
$3.496498897$ |
$1$ |
|
$5$ |
$384$ |
$0.166143$ |
$22235451328/123201$ |
$[0, -1, 0, -234, -1296]$ |
\(y^2=x^3-x^2-234x-1296\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.1, 104.24.0.?, 312.48.0.? |
1248.b4 |
1248h4 |
1248.b |
1248h |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{9} \cdot 3^{12} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$6.992997795$ |
$1$ |
|
$1$ |
$768$ |
$0.512716$ |
$-245314376/6908733$ |
$[0, -1, 0, -104, -2856]$ |
\(y^2=x^3-x^2-104x-2856\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.16, 104.24.0.?, 312.48.0.? |
1248.c1 |
1248g2 |
1248.c |
1248g |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1.065924653$ |
$1$ |
|
$5$ |
$128$ |
$-0.095314$ |
$1000000/507$ |
$[0, -1, 0, -33, -15]$ |
\(y^2=x^3-x^2-33x-15\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
1248.c2 |
1248g1 |
1248.c |
1248g |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.532962326$ |
$1$ |
|
$7$ |
$64$ |
$-0.441888$ |
$10648000/117$ |
$[0, -1, 0, -18, 36]$ |
\(y^2=x^3-x^2-18x+36\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
1248.d1 |
1248b2 |
1248.d |
1248b |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3^{5} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$640$ |
$0.516811$ |
$61162984000/41067$ |
$[0, -1, 0, -1313, -17871]$ |
\(y^2=x^3-x^2-1313x-17871\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
1248.d2 |
1248b1 |
1248.d |
1248b |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{10} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$320$ |
$0.170238$ |
$1643032000/767637$ |
$[0, -1, 0, -98, -132]$ |
\(y^2=x^3-x^2-98x-132\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
1248.e1 |
1248f1 |
1248.e |
1248f |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{8} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.691796$ |
$42246001231552/14414517$ |
$[0, -1, 0, -2902, 61132]$ |
\(y^2=x^3-x^2-2902x+61132\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
1248.e2 |
1248f2 |
1248.e |
1248f |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{12} \cdot 3^{4} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$1.038370$ |
$-420526439488/390971529$ |
$[0, -1, 0, -2497, 78385]$ |
\(y^2=x^3-x^2-2497x+78385\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.48.0.? |
1248.f1 |
1248e3 |
1248.f |
1248e |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{9} \cdot 3^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$1.560471980$ |
$1$ |
|
$3$ |
$768$ |
$0.512716$ |
$11339065490696/351$ |
$[0, 1, 0, -3744, 86940]$ |
\(y^2=x^3+x^2-3744x+86940\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.ba.1.12, $\ldots$ |
1248.f2 |
1248e2 |
1248.f |
1248e |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3^{3} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$0.390117995$ |
$1$ |
|
$9$ |
$768$ |
$0.512716$ |
$1360251712/771147$ |
$[0, 1, 0, -369, -513]$ |
\(y^2=x^3+x^2-369x-513\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 12.24.0-12.h.1.1, 104.24.0.?, 312.48.0.? |
1248.f3 |
1248e1 |
1248.f |
1248e |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$312$ |
$48$ |
$0$ |
$0.780235990$ |
$1$ |
|
$11$ |
$384$ |
$0.166143$ |
$22235451328/123201$ |
$[0, 1, 0, -234, 1296]$ |
\(y^2=x^3+x^2-234x+1296\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.2, 104.24.0.?, 312.48.0.? |
1248.f4 |
1248e4 |
1248.f |
1248e |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{9} \cdot 3^{12} \cdot 13 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1.560471980$ |
$1$ |
|
$9$ |
$768$ |
$0.512716$ |
$-245314376/6908733$ |
$[0, 1, 0, -104, 2856]$ |
\(y^2=x^3+x^2-104x+2856\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.ba.1.8, 104.24.0.?, 312.48.0.? |
1248.g1 |
1248i1 |
1248.g |
1248i |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$312$ |
$48$ |
$0$ |
$0.426142225$ |
$1$ |
|
$9$ |
$128$ |
$-0.358298$ |
$5088448/1053$ |
$[0, 1, 0, -14, 12]$ |
\(y^2=x^3+x^2-14x+12\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
1248.g2 |
1248i2 |
1248.g |
1248i |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{12} \cdot 3^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$312$ |
$48$ |
$0$ |
$0.852284451$ |
$1$ |
|
$5$ |
$256$ |
$-0.011725$ |
$778688/1521$ |
$[0, 1, 0, 31, 111]$ |
\(y^2=x^3+x^2+31x+111\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$ |
1248.h1 |
1248d2 |
1248.h |
1248d |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3^{5} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.160149900$ |
$1$ |
|
$13$ |
$640$ |
$0.516811$ |
$61162984000/41067$ |
$[0, 1, 0, -1313, 17871]$ |
\(y^2=x^3+x^2-1313x+17871\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
1248.h2 |
1248d1 |
1248.h |
1248d |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{10} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.320299800$ |
$1$ |
|
$9$ |
$320$ |
$0.170238$ |
$1643032000/767637$ |
$[0, 1, 0, -98, 132]$ |
\(y^2=x^3+x^2-98x+132\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
1248.i1 |
1248j2 |
1248.i |
1248j |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$128$ |
$-0.095314$ |
$1000000/507$ |
$[0, 1, 0, -33, 15]$ |
\(y^2=x^3+x^2-33x+15\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.c.1, 156.12.0.? |
1248.i2 |
1248j1 |
1248.i |
1248j |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$-0.441888$ |
$10648000/117$ |
$[0, 1, 0, -18, -36]$ |
\(y^2=x^3+x^2-18x-36\) |
2.3.0.a.1, 12.6.0.b.1, 26.6.0.b.1, 156.12.0.? |
1248.j1 |
1248c1 |
1248.j |
1248c |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( 2^{6} \cdot 3^{8} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.691796$ |
$42246001231552/14414517$ |
$[0, 1, 0, -2902, -61132]$ |
\(y^2=x^3+x^2-2902x-61132\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
1248.j2 |
1248c2 |
1248.j |
1248c |
$2$ |
$2$ |
\( 2^{5} \cdot 3 \cdot 13 \) |
\( - 2^{12} \cdot 3^{4} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$104$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$1.038370$ |
$-420526439488/390971529$ |
$[0, 1, 0, -2497, -78385]$ |
\(y^2=x^3+x^2-2497x-78385\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.48.0.? |