Show commands for:
SageMath
sage: E = EllipticCurve("ey1")
sage: E.isogeny_class()
Elliptic curves in class 123840ey
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
123840.i3 | 123840ey1 | [0, 0, 0, -39468, -3014192] | [2] | 294912 | \(\Gamma_0(N)\)-optimal |
123840.i2 | 123840ey2 | [0, 0, 0, -50988, -1111088] | [2, 2] | 589824 | |
123840.i4 | 123840ey3 | [0, 0, 0, 196692, -8739632] | [2] | 1179648 | |
123840.i1 | 123840ey4 | [0, 0, 0, -482988, 128316112] | [2] | 1179648 |
Rank
sage: E.rank()
The elliptic curves in class 123840ey have rank \(1\).
Complex multiplication
The elliptic curves in class 123840ey do not have complex multiplication.Modular form 123840.2.a.ey
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.