Show commands for:
SageMath
sage: E = EllipticCurve("j1")
sage: E.isogeny_class()
Elliptic curves in class 12342j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
12342.q2 | 12342j1 | [1, 0, 1, -1455, -17426] | [2] | 11520 | \(\Gamma_0(N)\)-optimal |
12342.q1 | 12342j2 | [1, 0, 1, -22025, -1259854] | [2] | 23040 |
Rank
sage: E.rank()
The elliptic curves in class 12342j have rank \(1\).
Complex multiplication
The elliptic curves in class 12342j do not have complex multiplication.Modular form 12342.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.