Properties

Label 123200.t
Number of curves 4
Conductor 123200
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("123200.t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 123200.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
123200.t1 123200bf4 [0, 1, 0, -41785633, -101033299137] [2] 15925248  
123200.t2 123200bf2 [0, 1, 0, -5721633, 5219084863] [2] 5308416  
123200.t3 123200bf1 [0, 1, 0, -89633, 200972863] [2] 2654208 \(\Gamma_0(N)\)-optimal
123200.t4 123200bf3 [0, 1, 0, 806367, -5414259137] [2] 7962624  

Rank

sage: E.rank()
 

The elliptic curves in class 123200.t have rank \(0\).

Modular form 123200.2.a.t

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - q^{7} + q^{9} + q^{11} - 4q^{13} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.