Show commands:
SageMath
E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 1230k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1230.k2 | 1230k1 | \([1, 0, 0, 2305, -15975]\) | \(1354330706847119/896670000000\) | \(-896670000000\) | \([7]\) | \(1960\) | \(0.98228\) | \(\Gamma_0(N)\)-optimal |
1230.k1 | 1230k2 | \([1, 0, 0, -1202045, -507358545]\) | \(-192081665892474305747281/5842628216430\) | \(-5842628216430\) | \([]\) | \(13720\) | \(1.9552\) |
Rank
sage: E.rank()
The elliptic curves in class 1230k have rank \(0\).
Complex multiplication
The elliptic curves in class 1230k do not have complex multiplication.Modular form 1230.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.