Show commands: SageMath
Rank
The elliptic curves in class 123008d have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 123008d do not have complex multiplication.Modular form 123008.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 123008d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
123008.a2 | 123008d1 | \([0, 1, 0, 641, 22281]\) | \(128\) | \(-227200942336\) | \([2]\) | \(122880\) | \(0.86056\) | \(\Gamma_0(N)\)-optimal |
123008.a1 | 123008d2 | \([0, 1, 0, -8969, 297127]\) | \(10976\) | \(7270430154752\) | \([2]\) | \(245760\) | \(1.2071\) |