Properties

Label 122a
Number of curves $1$
Conductor $122$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(61\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122a do not have complex multiplication.

Modular form 122.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} + q^{5} + 2 q^{6} - 5 q^{7} - q^{8} + q^{9} - q^{10} - 3 q^{11} - 2 q^{12} - 3 q^{13} + 5 q^{14} - 2 q^{15} + q^{16} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 122a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122.a1 122a1 \([1, 0, 1, 2, 0]\) \(1685159/976\) \(-976\) \([]\) \(8\) \(-0.73692\) \(\Gamma_0(N)\)-optimal