Properties

Label 1225j
Number of curves $2$
Conductor $1225$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1225j have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1225j do not have complex multiplication.

Modular form 1225.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{9} - 3 q^{11} + 2 q^{12} + q^{13} - 4 q^{16} + 7 q^{17} + 4 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1225j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1225.a2 1225j1 \([0, 1, 1, 82, 424]\) \(4096/7\) \(-102942875\) \([]\) \(384\) \(0.22243\) \(\Gamma_0(N)\)-optimal
1225.a1 1225j2 \([0, 1, 1, -7268, -242126]\) \(-2887553024/16807\) \(-247165842875\) \([]\) \(1920\) \(1.0271\)